2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。
一、夏普莱斯:两次获得诺贝尔化学奖
2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。
今年,他第二次获奖的「点击化学」,同样与药物合成有关。
1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。
过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。
虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。
虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。
有机催化是一个复杂的过程,涉及到诸多的步骤。
任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。
不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。
为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。
点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。
点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。
夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。
大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。
大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。
大自然的一些催化过程,人类几乎是不可能完成的。
一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。
夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?
大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。
在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。
其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。
诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:
夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。
他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。
「点击化学」的工作,建立在严格的实验标准上:
反应必须是模块化,应用范围广泛
具有非常高的产量
仅生成无害的副产品
反应有很强的立体选择性
反应条件简单(理想情况下,应该对氧气和水不敏感)
原料和试剂易于获得
不使用溶剂或在良性溶剂中进行(最好是水),且容易移除
可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定
反应需高热力学驱动力(>84kJ/mol)
符合原子经济
夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。
他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。
二、梅尔达尔:筛选可用药物
夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。
他就是莫滕·梅尔达尔。
梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。
为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。
他日积月累地不断筛选,意图筛选出可用的药物。
在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。
三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。
2002年,梅尔达尔发表了相关论文。
夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。
三、贝尔托齐西:把点击化学运用在人体内
不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。
虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。
诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。
她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。
这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。
卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。
20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。
然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。
当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。
后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。
由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。
经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。
巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。
虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。
就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。
她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。
大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。
2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。
贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。
在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。
目前该药物正在晚期癌症病人身上进行临床试验。
不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。
「 点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)
参考
https://www.nobelprize.org/prizes/chemistry/2001/press-release/
Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.
Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.
Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.
https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf
https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf
Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.
【新时代新征程新伟业】辽宁抚顺雷锋学院:把雷锋精神代代传承下去******
中新网沈阳12月27日电 题:辽宁抚顺雷锋学院:把雷锋精神代代传承下去
作者 李晛 韩宏
六十年,一个甲子岁月;六十年,一种精神坚守。
1962年8月15日,因为一次意外,雷锋在辽宁省抚顺市望花区军营驻地因公殉职,生命永远定格在了22岁的芳华。
对一个人的怀念,莫过于在他走后,还有无数人在讲述着他的故事,诵读着他的文字,做着与他一样的事。
辽宁省抚顺市拥有全国最集中、最丰富的雷锋文化资源,这里是雷锋精神的发祥地、全国学雷锋活动的策源地、全国学雷锋纪念地。如今,走进位于抚顺市的雷锋学院,雷锋元素、雷锋文化符号无处不在,浓浓的雷锋文化氛围,让人如沐春风。一张张黑白老照片,再现了雷锋那只有22年的生命历程,更清晰地呈现出他在辽宁留下的工作足迹。
雷锋学院建院以来突出党的理论教育和党性教育,大力开展理想信念宗旨、党章党规党纪党史、优良传统作风等教育培训,教育引导广大党员干部和人民群众牢记初心使命、坚定理想信念、赓续红色血脉。学院定位为全国党性教育基地、社会主义核心价值观教育实践基地、学雷锋研学实践教育基地。2022年,雷锋学院被中组部列入省级党性教育干部学院目录,成为辽宁省唯一一家独立办学的党性教育干部学院(全国共72家)。截至目前,雷锋学院共举办培训班次940余个,培训人数5.9万余人。
雷锋学院2022华晨宝马基层党务工作者培训班开班仪式。 雷锋学院供图雷锋在日记中曾写道:“人的生命是有限的,可是,为人民服务是无限的,我要把有限的生命,投入到无限的为人民服务之中去。”雷锋用一件件平凡的小事成就了不平凡的人生,用矢志不渝的坚守筑起了中华民族的道德坐标。如今,在雷锋学院有这样一群人,他们赓续雷锋精神血脉,用无私奉献扛起了守护群众健康的使命担当。
“您好!师傅,请出示您的核酸检测单和行程码。”“这位司机同志,麻烦您配合出示健康码、行程卡和48小时核酸检测阴性证明”......2022年初,在抚顺市新冠肺炎疫情防控期间,雷锋学院派出多名教职工,下沉到东洲、章党卡点投身疫情防控一线志愿服务。他们中有快退休的老党员、襁褓中婴儿的爸爸、退伍转业军人、新入职的“98后”……交通卡点作为“外防输入”第一道防线,工作任务重、难度大、困难多,设卡值守期间,学院志愿者们每天持续奋战超11个小时,牢牢坚守在疫情防控第一线。
“想到我的点滴心意能够救死扶伤就感到献血这件事意义重大,今后我会继续参加无偿献血活动,传承和发扬雷锋精神。”与抗击新冠肺炎疫情一样,在雷锋学院献血活动现场洋溢着温暖,全体教职工依次有序填表登记、血压测量、抽血化验、排队献血,秩序井然,有条不紊。参与献血的志愿者撸起袖子、伸出手臂,一汩汩寄托着爱的鲜血从他们体内传输到贮血袋,凝聚起了守护生命的强大力量。
“雷锋叔叔”,是几代中国少年儿童心中最温暖的偶像。雷锋学院特聘访谈嘉宾孙桂琴曾被雷锋辅导过,一张和“雷锋叔叔”的合影温暖了孙桂琴的一生。1960年,雷锋到抚顺市望花区建设街小学(现雷锋小学)和学生们一起读书、合影,并对学生孙桂琴说:“以后上学要系好红领巾,要爱护红领巾,因为那是国旗的一角。”从此,孙桂琴一路追随着雷锋的精神,她用半个多世纪的时间,几乎踏遍了祖国每一个角落,向人们讲述雷锋事迹。
“如果你是一滴水,你是否滋润了一寸土地?如果你是一线阳光,你是否照亮了一分黑暗?”在六十年后的今天,我们再次细细咀嚼着雷锋写下的日记时,仍能感受到雷锋心中洋溢的深情,催人奋进。
雷锋学院新疆青少年工作者素质提升培训班。 雷锋学院供图据介绍,为引导更多人弘扬革命传统、传承红色基因,从中汲取信仰、信念、信心、智慧和力量。雷锋学院创新探索党史学习教育新模式、新路径、新方法,紧密围绕党史学习教育聘请多位省内外知名专家讲授精品专题课。学院用心用情用力打造出音乐党课、故事党课、大型情景党史课等多个精品课程,采用舞台剧演出、歌曲、讲授与多媒体结合的方式开展沉浸式教学。目前,雷锋学院已打造现场教学基地50余个,通过发放学员留言卡、拨打回访电话等形式对学院课程、服务保障进行评价,满意度达到99.4%。(完)
(文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |